Soil Health and Fertility in Grasslands

@RichTudorLlysun
Are we achieving potential grass yields?
“Soil health is like human health; it’s hard to define, but you sure know when you don’t have it.”

David R. Montgomery, Univ. of Washington
Groundswell 2017
10% yield reduction at pH 5.5 compared to pH 6.0
How much Acidity is in my soil?

- Neutral: No Acidity
- Target for Tillage Soils

Soil pH

Soil Acidity ("X times" compared to pH 7)

X10
X25
X65
X100
GRASSLAND SOIL COMPACTION

CAUSES:
- Intense Rainfall
- Heavy Machinery
- Cows Poaching
- Excessive Slurry Applications
- Mineral Imbalance (Calcium/Magnesium)

CONSEQUENCES:
- Nutrient Run Off – Polluted Watercourses
- Grassland Production Reduced
- Fertiliser Requirement Increased
- Forage Minerals Imbalanced
- Cold Soils
- Biologically Dead Soils

Compacted Soil
(no air)
a worm's worth: HOW EARTHWORMS HELP THE GREEN GRASS GROW

Whether you call them nightcrawlers, rainworms, legworms, earthworms, or just worms, these little wigglers contribute to healthy, beautiful lawns in a variety of ways. Learn more about these often unseen creatures, and how you can use them to benefit your lawn.

They break up thatch
Thatch is a rough, dense layer of material (dead grass, stems, and roots) that blocks the flow of water and nutrients.

They eat nematodes
Nematodes are parasites that feed on dead roots. Unchecked, they cause yellowing, wilting, and bare patches.

- **5x more nitrogen in soil with worms**

They help water flow
The tunnels they make break up the soil and provide a path for water to flow and reach roots easily.

- **7x more phosphate in soil with worms**

They eat other pests
By removing the biomass of harmful bacteria, fungi, and mites, worms increase the amount of beneficial microbes.

- **11x more potassium in soil with worms**

They fertilize the soil
Earthworm waste—called castings—is more nutrient-rich than the soil the worms initially consumed.

- **Test... phosphorus and potassium are the nutrients represented by the 3 numbers on fertilizer bags.**

Help your earthworms help you!
- Keep them fed by creating an earthworm pile (a stack of leaves, kitchen scraps, and other organics) near your lawn, and by leaving grass clippings on the lawn after mowing.
- Baiting with fish and peanuts can kill earthworms, so be careful!
BEFORE A PLANT GROWS UP, IT GROWS DOWN
There are more living organisms in a teaspoon of soil than there are people on Earth, i.e. more than 6+ billion! *(Source: Soil-Net)*
5-20% of plant N comes from N-fixing bacteria
75% of plant P comes from Mycorrhizal fungi
Effect of post-grazing residual on pasture daily growth rate (MU-FSRC)

Time to grow 1 ton = 64 days
Time to grow 1 ton = 40 days

In a 200 day growing season
- \(\frac{200 + 64 \text{ days}}{\text{ton}} = 3.1 \text{ T/A} \)
- \(\frac{200 + 40 \text{ days}}{\text{ton}} = 5 \text{ T/A} \)

Daily growth rate (lb/acre/day)
Residual height (inches)
Different forage species and their relative root depth and structure.

Image by Integrity Soils.
Macronutrients in perennial ryegrass, white clover and perennial chicory (% of DM)

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>P</th>
<th>K</th>
<th>S</th>
<th>Ca</th>
<th>Mg</th>
<th>Na</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perennial ryegrass</td>
<td>3.77</td>
<td>0.370</td>
<td>3.80</td>
<td>0.347</td>
<td>0.42</td>
<td>0.173</td>
<td>0.182</td>
</tr>
<tr>
<td>White clover</td>
<td>4.56</td>
<td>0.347</td>
<td>2.83</td>
<td>0.213</td>
<td>1.19</td>
<td>0.237</td>
<td>0.205</td>
</tr>
<tr>
<td>Perennial chicory</td>
<td>4.35</td>
<td>0.663</td>
<td>3.80</td>
<td>0.627</td>
<td>1.18</td>
<td>0.393</td>
<td>0.591</td>
</tr>
</tbody>
</table>

Micronutrients in perennial ryegrass, white clover and perennial chicory (mg/kg)

<table>
<thead>
<tr>
<th></th>
<th>Fe</th>
<th>Mn</th>
<th>Cu</th>
<th>Zn</th>
<th>B</th>
<th>Co</th>
<th>Se</th>
<th>Mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perennial ryegrass</td>
<td>151</td>
<td>99</td>
<td>7.9</td>
<td>22.0</td>
<td>19.0</td>
<td>0.193</td>
<td>0.023</td>
<td>0.640</td>
</tr>
<tr>
<td>White clover</td>
<td>109</td>
<td>55</td>
<td>8.6</td>
<td>22.0</td>
<td>28.7</td>
<td>0.173</td>
<td>0.073</td>
<td>0.223</td>
</tr>
<tr>
<td>Perennial chicory</td>
<td>167</td>
<td>161</td>
<td>18.6</td>
<td>57.7</td>
<td>38.3</td>
<td>0.273</td>
<td>0.043</td>
<td>0.420</td>
</tr>
</tbody>
</table>

Source: K. Harrington, Institute of Natural Resources, Massey University, New Zealand
1. Build life in to the soil
2. Lime
3. Compaction
4. Time factor
5. Species diversity
6. Soil analyses
Iechyd Da