FARMING
DOSBARTHIADAU

MASTER GRASS FACTSHEET
 Beef and Sheep 2023

START WITH YOUR SOILS -

> Drainage

> Dig a hole - assess soil health, earthworm population, signs of compaction
> Soil test - correct PH, P, K indexes and asses Organic Matter levels

Farm Trials at Harper Adams 2014-2018
> Adding Red clover to grass mix consistently added $>2 \mathrm{t}$ DM/ha per year
> Adding white clover to base mix added $>1.5 \mathrm{t}$ DM/ha
> Adding Red + White Clover to base mix added >3.5 t DM/ha
> The highest yielding mix is only 45\% PRG, something to think about

Useful Information

- Grass is measured in kgDM/ha
- A Hectare can grow between 4-15tonnes DM/ha
- Growth varies from $0-120 \mathrm{kgDM} / \mathrm{ha}$
- Grass cover varies between 1400-5000 kgDM/ha
- Covers= The amount of grass in a field
- Average cover= The average $\mathrm{KgDM} / \mathrm{ha}$ in a number of fields
- Residual= grass left after a grazing
- Demand $=$ KgDM/Day needed by an animal or group of animals depending on bodyweight and stage of production

Grass is the cheapest source of feed for ruminant livestock if managed correctly!

Re-seeding

> Improves yield and quality by introducing new varieties into leys and improved Nitrogen efficiency
> Higher output/ha and reduced purchased feed
> Opportunity to address weed burden
> Break crop (such as brassicas) recommended before full re-seed for best result
>Oversowing grass and white clover is the cheapest option
Nitrogen still cheap when compared to bought in feed (But don't shout about it!)

Seed mixes

> Choosing the right grass seed mix for your system is essential
> Use the best varieties off the "Recommended Grass and Clover List"
> Mixed herbal leys- plantain and chicory for better drought resistance?

Measuring Grass

> To supply the right Quantity and Quality of feed at the right time so stock can express their genetic potential.
> We measure grass using a rising plate meter or cut and weight system and record data on farm software such as AgriNet / Farmax etc
> Figures we get include

- Average Farm Cover: how much grass is on our farm
- Grass Growth: Increased or Decreased? Is it higher or lower than our demand?

Designing a grazing system
> Minimise the number of groups of livestock and increase mob size
> Paddocks are equally sized as possible
> Each paddock has a water supply
> Free software to help - Google maps, Google earth pro, Field Margin etc.

Water Essential for system success

- Pipe size - $20-25 \mathrm{~mm}$ for sheep / $25-32 \mathrm{~mm}$ for cattle
- Supply through mains / Gravity fed from large holding tank / Solar Pump / Electric pump

Pink line = Grass growth curve throughout the year Blue line = Demand of most livestock systems throughout the year.

Production Potential of Managed Grazing				
Grazing 'on time' (Days)	Annual Yield (Tonnes DM Ha	Utilisation	Total Utilised DM (Tonnes DM Ha)	$\begin{array}{\|c\|} \hline \text { Producti } \\ \text { on } \\ \text { Increase } \end{array}$
Set Stocking	6	70\%	4.2	-
3-7	8	80\%	6.4	50\%
$2-3$	10	85\%	8.5	100\%
1	12	90\%	10.8	150\%
$\cup 5$ min min				

(30/5/23) 2 tonnes of Dry Matter of Pasture/ha is Equivalent to: 8 round bales of silage $=£ 360$ Or
580kg Ammonia Nitrate Fertiliser= $£ 400$ Or
2.2 Tonnes Concentrate Feed $=£ 800$

Conclusion: High performing farmers are...

- Innovative
- Business minded
- Effective at benchmarking
- Collaborative
- Effective at controlling costs

Grazing systems Design Rules of Thumb

$>$ Total area $=$ Group Demand $(\mathrm{kgDM}) \div$ Potential Growth (kgDM/ha)
$>$ Number of Animals required $=$ Area $(\mathrm{ha}) \times$ Potential Growth (kgDM/ha) / Demand per animal (kgDM/hd)
> Target Rotation Length $=$ Pasture Available (kgDM/ha) \div Potential Growth (kgDM/ha)
> Number of paddocks $=$ Rotation Length (days) \div Desired Grazing On-Time (days)
>Average Paddock Size (ha) = Total Area (ha) \div Number of Paddocks

