

Carbon and nitrogen cycles in agriculture – August 2022

Nitrogen (N) and carbon (C) cycles are essential for life and ecosystem functionality.

C from atmospheric CO² provides energy for all plants and animals to live and grow

N is important in making proteins and a lack can limit growth and be detrimental

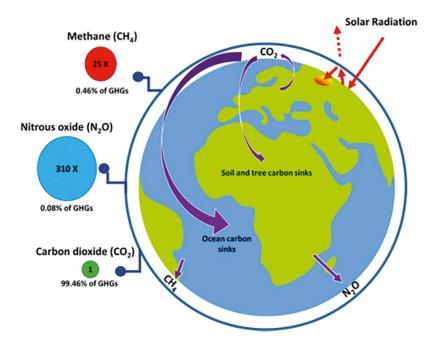
Soil organic matter (SOM) is a measure of carbon in the soil linked with sequestration

Ideal systems should aim to maximise SOM and minimise N,O, CO, and CH₄ production

CHANGING THE CYCLE

Intensive agricultural practices change these cycles

- 1) **Heavy fertiliser use** boosts plant growth, but delivers more N for **conversion into** N₂O and polluting N in environments
- 2) High livestock stocking leads to increased **CH**₄ **production** through enteric fermentation
- 3) Crops with no, or minimal, mycorrhizal interactions **store less C** within **SOM**
- 4) **Ploughing soils** releases stored C as CO₂ and disrupts mycorrhizal root systems and ecosystems
- 5) **Short rotation crops and pastures** don't have long enough to store C and efficiently utilise N



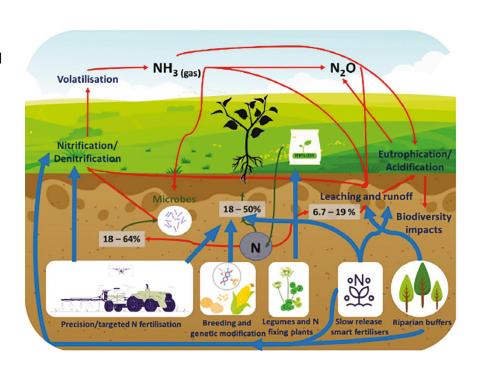
But traditional and sustainable agricultural practices try to work by understanding these cycles

- 1) Long-term perennial and permanent plants work better with mycorrhizae, storing more C and needing less N fertilisation to grow, lowering available N for microbial N₂O production
- 2) Precise **rotational grazing** uses land more effectively, maximising meat/milk production compared to **CH**₄ **produced**, reducing **N fertiliser use overall**
- 3) Biofuel production can produce C-neutral energy steadying the increase of CO₂ in the C cycle
- 4) Precision fertiliser usage, using what is needed, where it's needed, lowers N for N₂O production
- 5) Composting/anaerobic digestion of wastes cycles N and C back, reducing agricultural emissions

CYCLES AND EMISSIONS

- C and N cycles release greenhouse gasses (GHG)
- GHGs trap energy from the sun warming the planet
- Methane and nitrous oxide trap more energy than CO₂.
- CO₂ lasts in the atmosphere for hundreds of years
- CH₄ and N₂O last between 10 and 100 years in the atmosphere
- We link all GHGs to CO₂ using their CO₂
 equivalent environmental impacts
- C and N cycle emissions can be affected by carbon sinks and improved uptake and utilisation efficiency (for example plant and animal breeding and feeding changes)

CYCLES AND EMISSIONS


Agriculture has high emissions, but the best prospects to improve soil and plant-based carbon sinks Practices that shift C and N cycles include species-rich grasslands, riparian buffers, zero/min tillage, cover cropping, agroforestry, legume use and recycling farm wastes to name a few

Improving C and N use/emissions can help public goods like biodiversity, air quality and water quality

Agriculture is a big emitter of N_2O , but reducing fertiliser use could improve this massively

Global **N** use efficiency of crops is **18 - 50%**, suggesting huge room for improvements

>50 % of N fertiliser is being cycled back damagingly into systems via volatilisation, nitrification, denitrification and leaching and runoff

