

# Assessing forestry and timber options for carbon impacts

Robert Matthews Forest Research Alice Holt Research Station Farnham GU10 4LH UNITED KINGDOM robert.matthews@forestresearch.gov.uk



- Some basic science
- Assessing forest (woodland) creation options
- Assessing management options for existing forests
- Available (and emerging) tools
- Some issues not to forget.



### Some basic science

# Carbon stock dynamics at different scales



- What is the problem?
  - Climate change
- What is causing the problem?
  - GHG emissions
- What do we want to do about the problem?
  - Reduce GHG emissions
  - Adapt...
- How do we show that our actions are leading to the desired outcomes?
- <u>GHG/carbon accounting!</u>



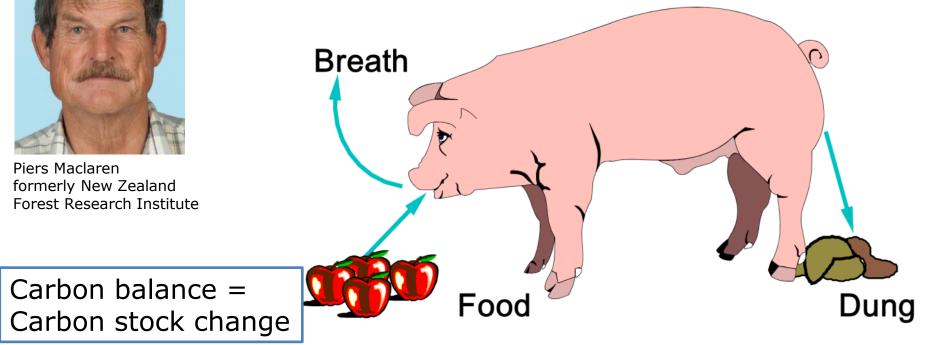
# (Obviously simplified)

- 1 barrel contains about 0.15 tonne of fuel oil
- Carbon content of fuel oil is about 0.85 "tC" per tonne oil
- So, burning 1 barrel of fuel oil releases about 0.15 ×0.85 ~ 0.13 tC.
- 1 tC equates to 44/12 tCO<sub>2</sub>
- Consuming 1 barrel of fuel oil emits  $0.13 \times 44/12 \sim 0.47 \text{ tCO}_2$ .



## CO<sub>2</sub> balances in forests

**EMISSIONS** REMOVALS CO<sub>2</sub> sources CO<sub>2</sub> sinks Carbon stocks Disturbance In forest: Photosynthesis • Above-ground biomass GPP stemwood branchwood Respiration bark - foliage Below-ground biomass - coarse roots - fine roots Forest growth - stumps NPP Litter Coarse woody debris Soil organic carbon Root respiration Out of forest • Harvested wood products N.O - primary Decomposition - secondary Woodfuel Dissolved Organic Carbon (DOC) Soil Organic Carbon (SOC) Human and natural impacts


Net ecosystem exchange (NEE = NPP - decomposition)

© Crown Copyright

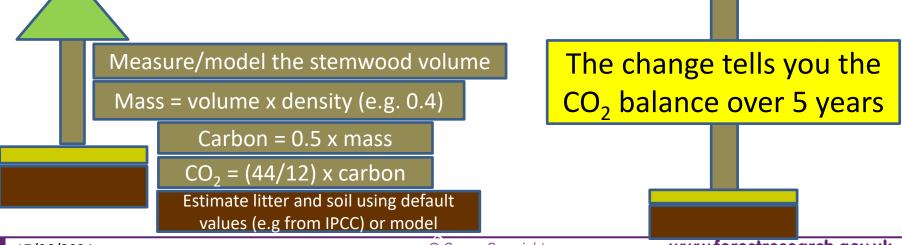


## Keep it simple ...

# Piers Maclaren's pig



### "Don't try to measure all the fluxes, just weigh the pig!"...

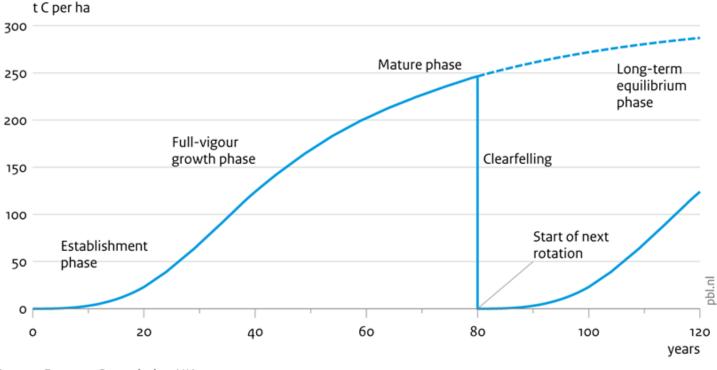



### Take measurements after a growing season

Keep it simple ...

Measure/model again 5 years later

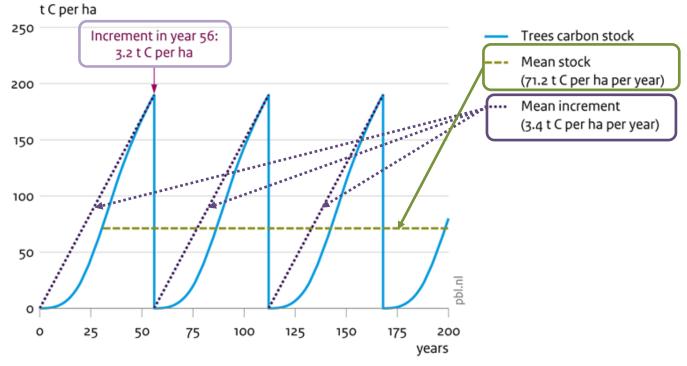
Estimate crownwood from standard relationships (e.g. 30% of result for stemwood)




17/06/2024

8

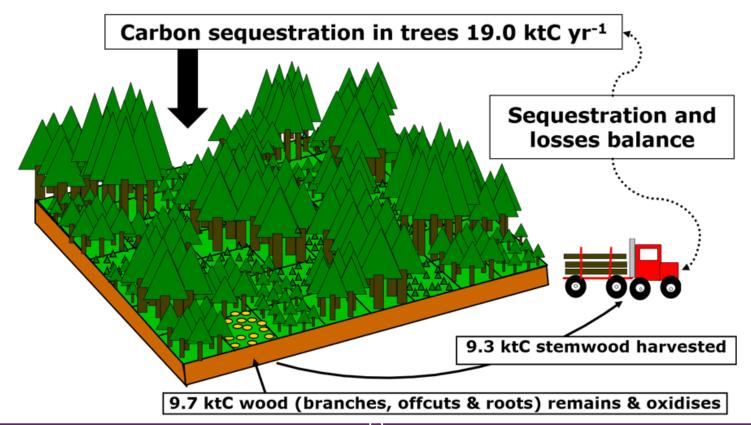
© Crown Copyright


#### Tree carbon stocks in a Sitka spruce forest stand (No thinning to keep the example simple)



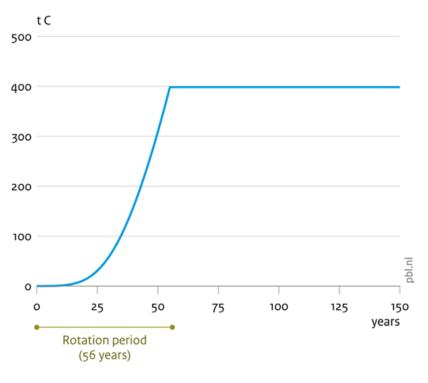
Source: Forestry Commission UK

Forest Research


#### A Sitka spruce forest stand on a clearfell rotation of 56 years



Source: Forestry Commission UK


# Carbon stock dynamics: landscape scale

#### Carbon stocks in trees after harvesting 398 ktC



Forest <u>Research</u>

#### Carbon stock of a Sitka spruce forest stand on a clearfell rotation of 56 years



Source: Forestry Commission UK

rest Research

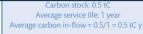
- Creating new forests results in a "one-off" (finite) increase in carbon stocks in vegetation
- (Size depends on see next)
- It *does not* result in continuous long-term carbon sequestration
- (Variable in soil)
- It *could* allow you to continuously produce `carbonneutral' timber and biomass

• BUT...

# orest Research Forest and wood product carbon dynamics



sequestration in trees 19.0 ktC yr<sup>-1</sup>


Figure A3.1 A log cabin, a sled and a stock of woodfuel illustrate the relationships among carbon stocks, flows and the service lives of wood products.

• How are the trees being managed?

Sequestration and

- How much wood can be converted into the product?
- How long does the product last in service?

tC wood (branches, offcuts & roots) remains & oxidises



Carbon stock: 15 tC Average service life: 50 years Average carbon in-flow = 15/50 = 0.3 tC y<sup>-1</sup>

Aver Average car

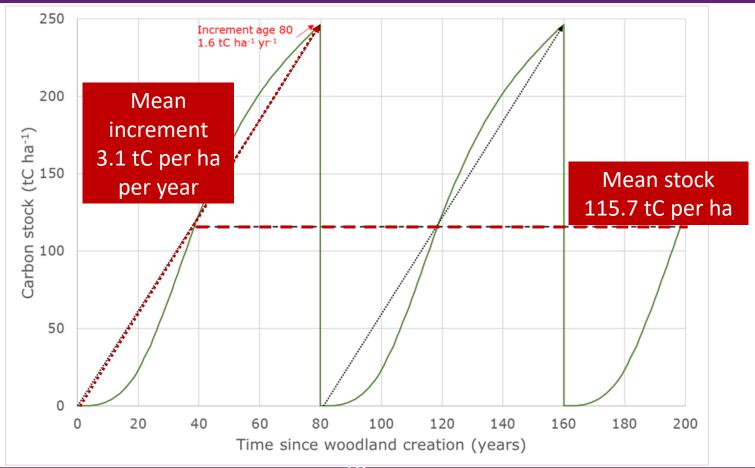
5/2 = 7.5 tC v

- What tree species?
- What type of site and soil?
- How fast are the trees growing?

- How big is the demand for the product?
- How much wood does the product contain?

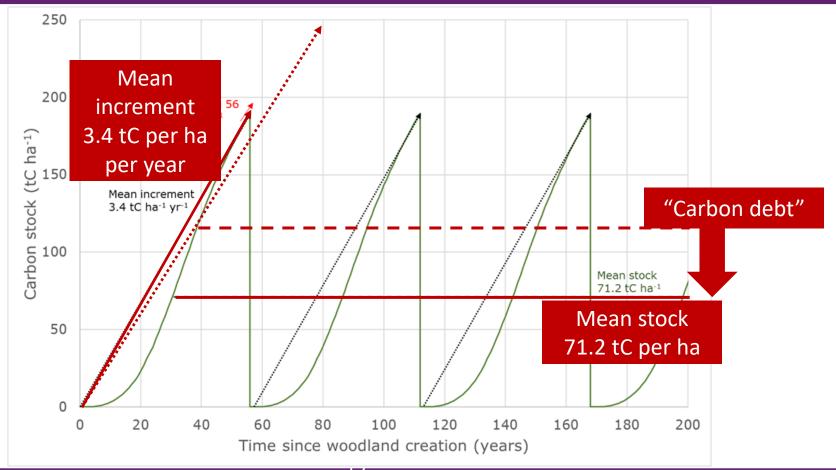
Carb




# Wood product "substitution effects"

|                                                      |                   | Wooden<br>Spoon | Stainless<br>Steel<br>Spoon | Plastic<br>Spoon |
|------------------------------------------------------|-------------------|-----------------|-----------------------------|------------------|
| Nigel Mortimer                                       |                   |                 |                             | 9                |
| formerly Director<br>North Energy Associates         |                   |                 |                             |                  |
| Energy<br>required (MJ)                              |                   | 0.2             | 5.9                         | 6.3              |
| CO <sub>2</sub><br>emissions<br>(g CO <sub>2</sub> ) |                   | 17              | 460                         | 200              |
| Potential                                            | g CO <sub>2</sub> | -               | 443                         | 183              |
| emissions<br>saved                                   | %                 | -               | 96                          | 92               |

| Forest Research                                 | Wood product "emissions d               | isplacement"                                   |
|-------------------------------------------------|-----------------------------------------|------------------------------------------------|
| Wood product category                           |                                         | Average<br>emissions<br>displacement<br>factor |
|                                                 |                                         | (tC per tC in<br>wood product)                 |
| Structural construction wall, wood frame, be    | 1.3                                     |                                                |
| Non-structural constr<br>floor cover, cladding, | 1.6                                     |                                                |
| Textiles                                        |                                         | 2.8                                            |
| Other product catego                            | ories (chemicals, furniture, packaging) | 1 - 1.5                                        |
| Grand average                                   |                                         | 1.2                                            |
| Source: Leskinen et al. (20                     | )18)                                    |                                                |


15 17/06/2024

# Intensifying management in a forest (1)



Forest Research

# Intensifying management in a forest (2)

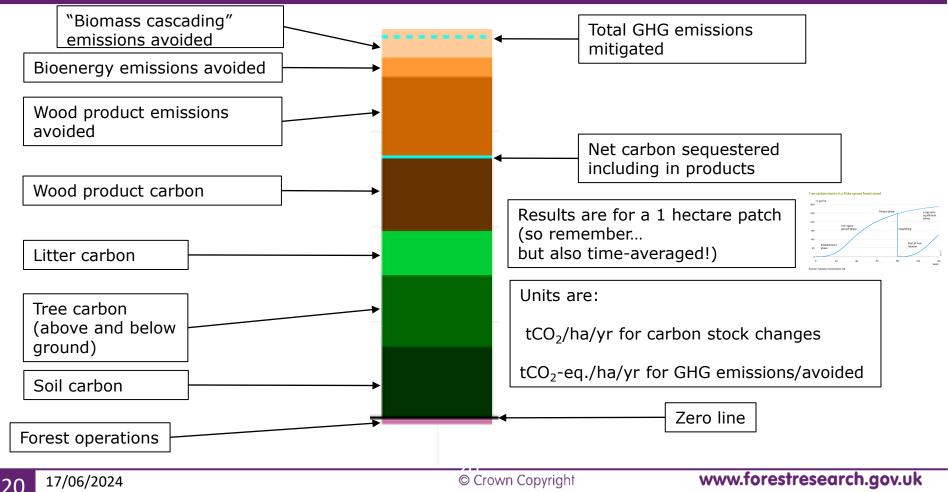


Forest Research



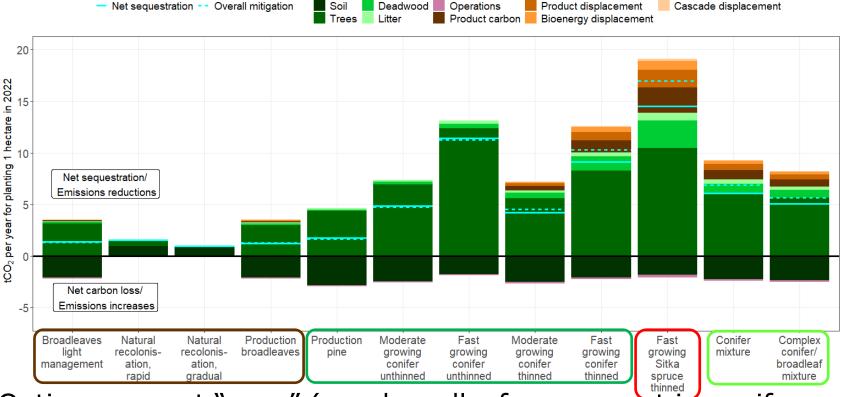
### Assessment of forest creation options

# ('Quantifying the Sustainable Forestry Carbon Cycle')




### Forest creation options

| Name                               | Yield class | Summary management                         |
|------------------------------------|-------------|--------------------------------------------|
| Broadleaves, light management      | 4           | Regular but low intensity thinning         |
| Natural recolonisation, rapid      | 4           | (continuous cover), also areas left        |
| Natural recolonisation, gradual    | 4           | unthinned/unmanaged                        |
| Production broadleaves             | 4           | Regular thinning (continuous cover)        |
| Production pine                    | 8           | Thinning, final felling with restocking    |
| Moderate growing conifer unthinned | 12          |                                            |
| Fast growing conifer unthinned     | 18          | No thinning, final felling with restocking |
| Moderate growing conifer thinned   | 12          |                                            |
| Fast growing conifer thinned       | 18          | Thinning, final felling with restocking    |
| Fast growing Sitka spruce thinned  | 24          |                                            |
| Conifer mixture                    | 14          | Regular thinning, patch felling            |
| Complex conifer/broadleaf mixture  | 14 and 6    | (continuous cover)                         |



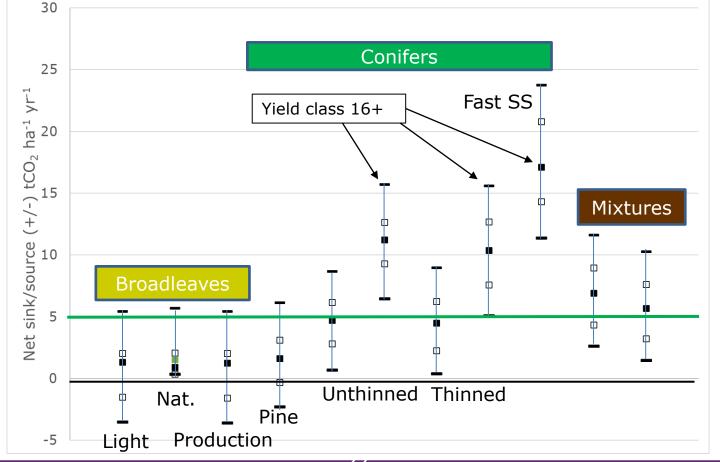

# Key to results

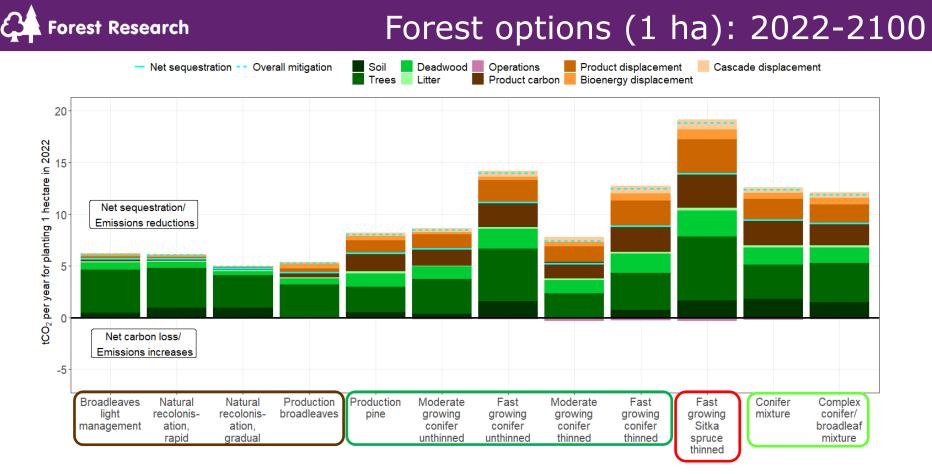




# Forest options (1 ha): 2022-2050



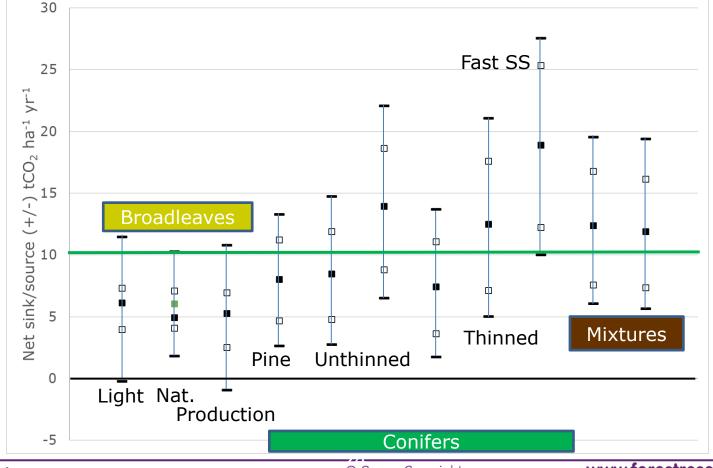

 Options are not "pure" (e.g. broadleaf component in coniferous woodlands); they are not interchangeable...


21 17/06/2024

© Crown Copyright



# Sensitivity analysis (2022-2050)






• Results depend on the time interval



# Sensitivity analysis (2022-2100)



#### © Crown Copyright



- Nearly all the forest options provide net GHG mitigation benefits in the period from <u>2022 to 2050</u>; none result in significant net GHG emissions
- <u>2022 to 2050</u>: net carbon sequestration in broadleaves in the range 0.9 to 1.6  $tCO_2/ha/yr$ ; conifers in the range 1.8 to 14.5  $tCO_2/ha/yr$
- But high sensitivity reveals significant overlaps
- Carbon sequestration strongly correlated with YC (2022-2050)
- Soil carbon losses can offset carbon sequestration in other carbon pools
- Minimising disturbance to soil and existing vegetation identified as a critical factor for achieving early carbon sequestration. Particularly for organo-mineral soils and woodlands where the trees have relatively slow growth rates.



- Net carbon sequestration in the different forest options closer to one another.
  - Faster growing forests are being felled by thinning or clearfelling, diminishing the rate of carbon sequestration in these forests when this occurs.
  - At the same time, the slower growing and relatively lightly managed broadleaved forest options continue to grow and sequester carbon in later decades during this period, so can eventually 'catch up' with coniferous forests.
- <u>2022-2100</u>: net carbon sequestration in broadleaves in the range 4.4 to 5.7 tCO<sub>2</sub>/ha/year; conifers in the range 5.2 to 14.0 tCO<sub>2</sub>/ha/year (*BUT* recall the sensitivities)
- Avoided emissions through wood product/bioenergy substitution effects are potentially significant for managed coniferous forest options.



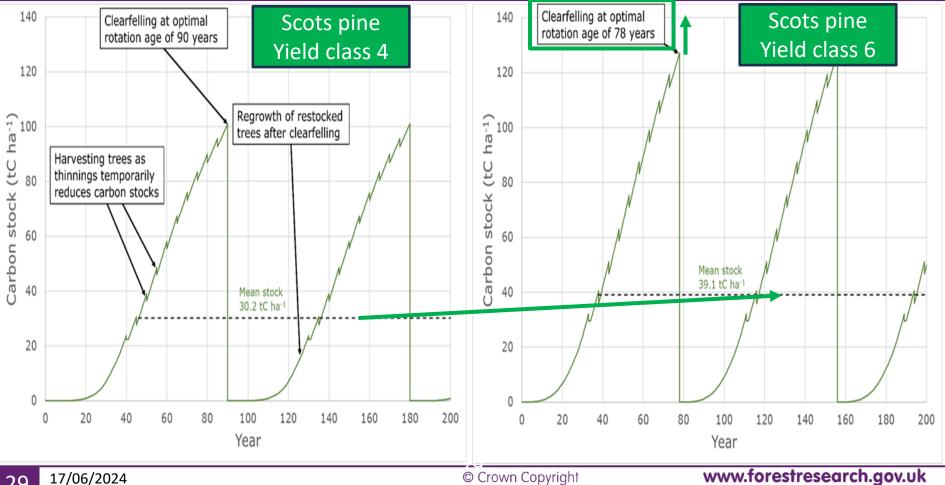
### Assessment of forest management options

(Report for PBL Netherlands Environmental Assessment Agency, in preparation

Managing carbon stocks and wood production

- 1. Divide the forest up into uniform 'forest units'
  - (Similar species, sites, soils, growth rates, management)
- 2. For each forest unit:

Forest Research

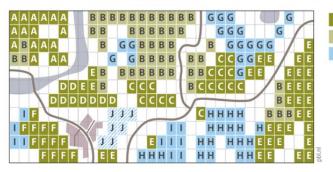

- 3. Characterise how the unit is being managed now
- 4. Calculate the mean carbon stock per hectare
- 5. Multiply by the area of forest in the unit to get the total carbon stocks in the unit
- 6. Add up the carbon stocks for all the forest units to get the total carbon stocks in the forest (long-term average)
- 7. Repeat (2-6) but for how units will be managed going forward from now

# 8. Carbon impact = carbon stock difference (before/after)

28 17/06/2024

© Crown Copyright

# Forest Research Carbon stocks: influence of 'stand improvement'




© Crown Copyright

### Managing carbon stocks and wood production

#### Hypothetical area of land including areas of forest managed in different ways

Forest Research



Area size Class

Historical or planned action

|    | - |                   |
|----|---|-------------------|
| 17 |   | New afforestation |

Creation of a mixture of forest areas, either for wood production

or for accumulation of maximum carbon stocks.

| Existing | forests |
|----------|---------|

| В | Continuing production                | Existing forest areas managed according to pre-existing plans, where<br>levels of wood production are consistent with historical levels.                                                                                                           |
|---|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C | Carbon management                    | Enhancement of wood production in single-species forest areas by restocking<br>with genetically improved trees in place of unimproved trees.                                                                                                       |
| D | Carbon management                    | Enhancement of wood production in forest areas by restocking with tree species<br>better suited to sites and climatic conditions, compared with existing tree specie                                                                               |
| E | Carbon management                    | Increased resilience of single-species forest areas at risk<br>of disease outbreaks by restocking with species mixtures.                                                                                                                           |
| F | Carbon management                    | Enhanced carbon stocks in forest areas with low productivity<br>by minimising harvesting and other disturbances.                                                                                                                                   |
| G | Increased production                 | Management of forest areas for increased wood production by<br>increasing frequency of thinning interventions.                                                                                                                                     |
| Н | Increased production                 | Management of forest areas for increased wood production by optimising<br>rotation periods, generally involving shortening of longer rotations.                                                                                                    |
| I | Increased production                 | Extraction of forest harvesting residues where previously these would have<br>been left to rot in the forest; decay rates estimated as moderate.                                                                                                   |
| 1 | Deforested areas                     | Forest areas converted to non-forest land because of unavoidable development                                                                                                                                                                       |
|   | B<br>C<br>D<br>E<br>F<br>G<br>H<br>I | <ul> <li>C arbon management</li> <li>G increased production</li> <li>Increased production</li> <li>Increased production</li> </ul> |

Carbon stock increase

Carbon stock stable

Carbon stock decrease

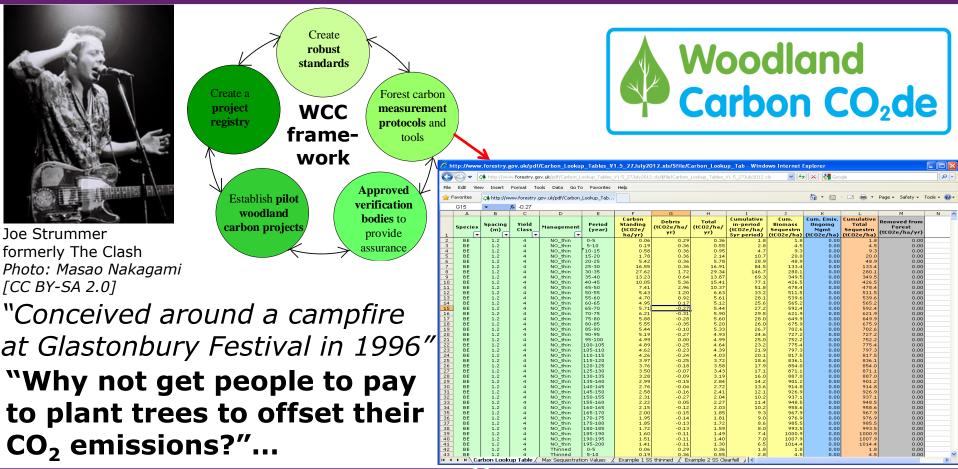
| Class of                    | Area                               | Mean    | carbon stock | per ha     |             |                    |  |
|-----------------------------|------------------------------------|---------|--------------|------------|-------------|--------------------|--|
| forest<br>(manage-<br>ment) | (arbitrary<br>units <sup>1</sup> ) | Initial | Resultant    | Difference | Probability | Total <sup>2</sup> |  |
| А                           | 7                                  | 2.5     | 81.4         | 78.9       | 0.8         | 442                |  |
| В                           | 50                                 | 45.5    | 45.5         | 0.0        | 1.0         | 0                  |  |
| С                           | 18                                 | 50.0    | 75.0         | 25.0       | 0.8         | 359                |  |
| D                           | 9                                  | 56.0    | 64.3         | 8.3        | 0.8         | 60                 |  |
| E                           | 36                                 | 0.0     | 37.0         | 37.0       | 0.1         | 133                |  |
| F                           | 50                                 | 50.4    | 59.0         | 8.6        | 0.9         | 387                |  |
| G                           | 2                                  | 50.4    | 215.9        | 165.5      | 0.7         | 232                |  |
| н                           | 20                                 | 90.0    | 57,0         | -33.0      | 1.0         | -660               |  |
| I                           | 21                                 | 71.8    | 57.0         | -14.8      | 1.0         | -311               |  |
| J                           | 11                                 | 51.9    | 36.3         | -15.6      | 1.0         | -171               |  |
| К                           | 7                                  | 45.5    | 2.5          | -43.0      | 1.0         | -301               |  |
| Total                       | 231                                | -       | -            |            | -           | 171                |  |

Source: Forestry Commission UK

Concept



- The science is relatively simple
- There are some other effects (albedo, biophysical)
  - Personally, I don't think these change the essential story
- There are lots of options when creating new forests don't get caught up on one option
  - (Right tree, right place, right time sorry ⊗)
  - Best to focus on the other motives for creating the forests?
  - Sequestration initially, low-emissions timber/biomass long-term
- Planning and implementing management for GHG emissions mitigation can involve challenges (e.g. tradeoffs), but is possible
- A (simple?) practical framework might help with this
  - Software tools?




### Some tools

# (existing, improving and emerging)



### Tools: Forest creation

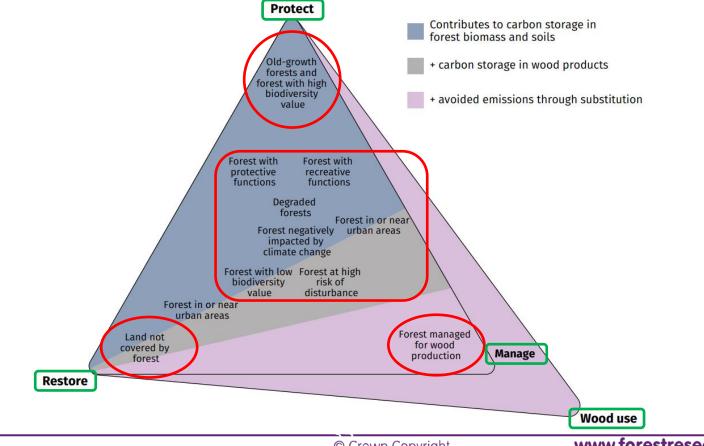


33 17/06/2024

© Crown Copyright



# Tools: Ground preparation and soil


|                                                  | Soil carbon total to depth indicated (tC ha <sup>-1</sup> ) |       |       |       |           |                             | Cultivation method, and total soil carbon losses (tC ha <sup>-1</sup> ) over one rotation |                            |                                  |                                              |                |                         |                           |                                      |                                      |
|--------------------------------------------------|-------------------------------------------------------------|-------|-------|-------|-----------|-----------------------------|-------------------------------------------------------------------------------------------|----------------------------|----------------------------------|----------------------------------------------|----------------|-------------------------|---------------------------|--------------------------------------|--------------------------------------|
| Soil type                                        | 1 m                                                         | 10 cm | 20 cm | 30 cm | 50/60 cm  | No<br>cultivatio<br>n<br>0% | Subsoilin<br>g/Ripping<br>5%                                                              | Inverted<br>mounding<br>5% | Patch<br>scarificatio<br>n<br>5% | Disc<br>scarificat<br>ion<br>(linear)<br>20% | Mulching<br>5% | Hinge<br>mounding<br>5% | Trench<br>mounding<br>10% | Shallow<br>strip<br>ploughing<br>20% | Deep<br>complete<br>ploughing<br>50% |
|                                                  | Depth of cultivation (cm):                                  |       |       |       |           |                             | 45-60 (60<br>assumed)                                                                     | 30                         | 15-20 (20<br>assumed)            | 20%                                          | 10             | 30                      | 50                        | <30 (30<br>assumed)                  | >30 (50                              |
| Brown<br>earth<br>(poor,<br>medium<br>fertility) | 152                                                         | 39    | 63    | 81.5  | 108.5/117 | 0                           | 5.9                                                                                       | 4.1                        | <u>3.1</u>                       | <u>12.6</u>                                  | 2.0            | 4.1                     | 10.8                      | 16.3                                 | 54.3                                 |
| Brown<br>earth (high<br>fertility                | 152                                                         | 39    | 63    | 81.5  | 108.5/117 | <u>0</u>                    | 5.9                                                                                       | 4.1                        | 3.1                              | 12.6                                         | 2.0            | 4.1                     | 10.8                      | 16.3                                 | 54.3                                 |
| Podzol                                           | 154                                                         | 37    | 66    | 85.5  | 113/121   | 0                           | 6.1                                                                                       | 4.3                        | 3.3                              | <u>13.2</u>                                  | <u>1.9</u>     | 4.3                     | 11.3                      | 17.1                                 | 56.5                                 |
| Ironpan soil<br>(Pan no<br>obstacle to<br>roots) | 154                                                         | 37    | 66    | 85.5  | 113/121   | 0                           | 6.1                                                                                       | <u>4.3</u>                 | 3.3                              | 13.2                                         | 1.9            | 4.3                     | 11.3                      | 17.1                                 | 56.5                                 |
| Ironpan soil<br>(Pan limits<br>root<br>growth)   | 154                                                         | 37    | 66    | 85.5  | 113/121   | 0                           | <u>6.1</u>                                                                                | <u>4.3</u>                 | 3.3                              | 13.2                                         | 1.9            | 4.3                     | 11.3                      | 17.1                                 | 56.5                                 |
| Ironpan soil<br>(Pan out of<br>reach)            | 154                                                         | 37    | 66    | 85.5  | 113/121   |                             | Treat like                                                                                | e gley/peaty               | gley/deep pe                     | at depend                                    | ing on pres    | ence and d              | epth of orga              | anic layer                           |                                      |
| Ranker                                           | 108                                                         | 43    | 75    | 108   | -/-       | 0                           | n/a                                                                                       | 5.4                        | 0*                               | 15.0                                         | 2.2            | 5.4                     | n/a                       | 21.6                                 | n/a                                  |

34 17/06/2024

© Crown Copyright



### "Climate Smart Forestry...?"



35 17/06/2024

© Crown Copyright



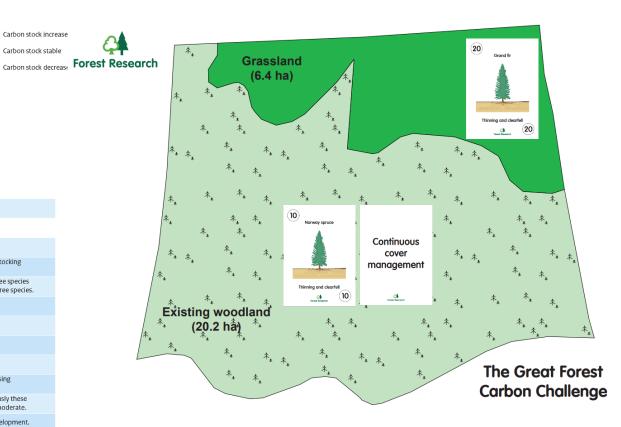
### Tools: Existing forests?

#### Hypothetical area of land including areas of forest managed in different ways

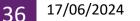
Carbon stock increase

Carbon stock stable




Class Area

Historical or planned action


Creation of a mixture of forest areas, either for wood production 7 A New afforestation or for accumulation of maximum carbon stocks

#### Existing forests

| 5 | o <b>B</b> | Continuing production | Existing forest areas managed according to pre-existing plans, where<br>levels of wood production are consistent with historical levels.                               |
|---|------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | 8 <b>C</b> | Carbon management     | Enhancement of wood production in single-species forest areas by restocking<br>with genetically improved trees in place of unimproved trees.                           |
|   | 9 D        | Carbon management     | Enhancement of wood production in forest areas by restocking with tree species<br>better suited to sites and climatic conditions, compared with existing tree species. |
| 3 | 6 <b>E</b> | Carbon management     | Increased resilience of single-species forest areas at risk<br>of disease outbreaks by restocking with species mixtures.                                               |
| 5 | o F        | Carbon management     | Enhanced carbon stocks in forest areas by extending rotation<br>periods, while avoiding significant reductions in wood production.                                     |
|   | 2 <b>G</b> | Carbon management     | Enhanced carbon stocks in forest areas with low productivity<br>by minimising harvesting and other disturbances.                                                       |
| 2 | • <b>H</b> | Increased production  | Management of forest areas for increased wood production by<br>increasing frequency of thinning interventions.                                                         |
| 2 | n 🚺        | Increased production  | Management of forest areas for increased wood production by optimising<br>rotation periods, generally involving shortening of longer rotations.                        |
| 1 | n 🔳        | Increased production  | Extraction of residues left behind after forest harvesting where previously these<br>would have been left to decay in the forest; decay rates estimated as moderate.   |
|   | 7 <b>K</b> | Deforested areas      | Forest areas converted to non-forest land because of unavoidable development.                                                                                          |



Source: Forest Research UK





- Carbon sequestration is reversible/"lock-in"
- How to ensure wood products give GHG savings
  - Joined-up sectoral policies (environmental integrity)
- Pay now to get (long-term) benefits eventually
- Environmental/social benefits difficult to monetise
  - Carbon prices can be very volatile
- Who's carbon is it anyway?
  - Forests
  - Wood products



- Need "no regrets" action (risk management)
- "Mind your language" (terminology, definitions ...)
- Beware simplistic arguments/positions
  - Too big for sectoral interests.



# Assessing forestry and timber options for carbon impacts

### Thank you